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Abstract

Let A denote a biaigebra over a field k and let At = A[[t]] denote

the ring of formal power series with coefficients in A. Assume that A is

also isomorphic to a free, associative algebra over k. We give a simple
construction which makes At a bialgebra deformation of A. In typical

applications, At is neither commutative nor cocommutative. In the

terminology of [1], At is a quantum group. This construction yields

quantum groups associated with families of trees.

1 Introduction

Let A denote a bialgebra over a field k and let At = A[[t]] denote the ring of

formal power series with coefficients in A. Assume that A is also isomorphic

to a free, associative algebra over k. We give a simple construction which

makes At a bialgebra deformation of A. In typical applications, At is neither

commutative nor cocommutative. In the terminology of [1], At is a quantum

group. This is an extended abstract. The final detailed version of this

paper [6] containing proofs and additional examples has been submitted for

publication elsewhere.

An interesting class of examples is obtained by taking the bialgebra A

to be the Hopf algebra associated with certain families of trees as in [4].

In fact, these examples are closely related to each other and to algorithms

pertaining to differential operators [5].

Formal deformations of bialgebras and quantum groups has also been

studied from related viewpoints by Drinfeld [1], Gerstenhaber [2], and Ger-

stenhaber and Schack [3]

"This is an extended abstract. The final detailed version of this paper has been sub-

mitted for publication elsewhere.
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2 Power series and the completed tensor product

Suppose that k is a field and A and B are k-algebras. We let At = A[[t]]

denote the ring of formal power series over A with its usual multiplication.
oo

Let f : A ----. Bt be a k-linear map and write f(a) = Y'_n=o cs(a, n) tn for

a E A. Define a k-linear map f:At _ Bt by

oo oo

f(a) =)-_( _ c](ai,j))t n, for a= _ant n eAt.
n=0 i+j=n n=O

Observe that we can define a cateogy (AIgk)t, whose objects are At and

whose morphisms are k-linear maps f "At -----" Bt satisfying f = f]A, where

flA is the restriction of f to A.

We define the completed tensor producl At_k, Bt of At and Bt over kt in

this category to be (A@k B)t. For a = _'-_n___oant" E At and b = _-"_n°°__obnt n G

Bt we let

a_b = _ ( _ ai _ bj )t".
n=0 i4-j=n

Suppose that f • At _ A_ and g : Bt _ B_ are morphisms. We define

a morphism of completed tensor products f_g : At_ktBt _ At®ktBtlA ' by

setting (f_g)la®kB(a ® b) - f(a)_g(b) for a E A and b E B. The usual

formalism for the linear tensor product of maps translates to

(f_g)(a_b) =/(a)_g(b)

for a E At and b E Bt in this category. Note that if f and g are also algebra

maps, then the morphism f_g : At_k,B, _ A_k,B_ is an algebra map.

Now let C be any coalgebra over k. A sequence of elements co, cx, c_, ... E

C is called a sequence of divided powers if

A(cn)= _ ci®cj and e(c,_)=6o,, for alln>0.
i+j=n

Probably the most basic example of a sequence of divided powers arises

from a primitive element in a bialgebra. Suppose that A is a bialgebra over

k and that _f E A is primitive. Since A is multiplicative, we calculate by the

binomial theorem that A(/?n) = (A(g))n = (e®l+l®/?)n = _--:_i=0(,)(gnnn -i Qel)
in

for n > 0. Thus c0, cl,c2,.., is a sequence of divided powers, where cn =

for n >_ 0.
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3 Deformations of certain enveloping algebras

The notions of algebra, coalgebra, bialgebra and Ilopf algebra in the category

(Aigk)t are the same as those in the category of vector spaces over the field

k except, of course, the structure maps are required to be morphisms. Let

(A, m, q) be an algebra over k, where m : A® A -----. A is multiplication and

r/: k ------- A defines the unity of A. Then (At, Fn, _) is an algebra in (Algk)t.

It is easy to see that _(a_b) = ab for a, b E At. A morphism f : At _ Bt

is a morphism of algebras if and only fla : A -----, Bt is a map of k-algebras.

The proof of the proposition below is really a matter of unravelling def-

initions.

Proposition 1 Suppose that A is an algebra over a field k with a k-coalgebra

structure (A,A,E). Then (At,A,c') is a coalgebra in (Algk)t. Furthermore

A(a) = _-_(A(a,_))t n and _'(a) = y_ C(an)t '_
n=O n=0

for a -- Y'_n°°=oant n E At.

Suppose that (At, A, ¢) is a coalgebra in (Algk)t. We say that K E At is

grouplike if

A(K) = If_K and e(K) = 1.

We say that/? E At is nearly primitive if

A(£) = e_K + H_e

for some grouplike elements K, H E At. If K = H = 1 then g is said to be

primitive.

For an algebra A over a field k of characteristic 0 we let exp(at) =

n=0t-h'T. I C At. The following corollary gives the relationship between

sequences of divided powers and grouplike elements.

Corollary 1 Suppose that A is an algebra over a field k which has a k-

coagebra structure (A,A,e). Let (At,A,'g) be the resulting coalgebra in

(Algk)t. Then:

(a) Let K = V'_ a tn/--,,_=0 n E At. Then K is grouplike if and only if ao, ax,a2,...

is a sequence of divided powers in A.

(b) Suppose that the characteristic of k is O. If a C A is primitive, then

K = exp(at) is a grouplike element of At.



Now we construct deformations of enveloping algebras over a field of

characteristic 0 which are free as associative algebras on a space of primitives.

Theorem 1 Suppose that V is a vectoi" space over a field k of characteristic

O. Turn the tensor algebra (A, m, '7) of V into a bialgebra (A, m, '7, A, e) by

defining A(e) = e® 1 + I ®e and e(g) = 0 for e E V. Let p,q E V and write

V as a direct sum of subspaces V = P _AP', where P = span(p,q). Then

there is bialgebra deformation (At, ffa, _, A,'g) of (A, m, '7, A, e) such that

a) X(e) = eSl + 16e for t P,

b) I( = ezp(pt) and H = exp(qt) are 9rouplike elements of (A,, zX,_'),

and

c) X(e) = tSl + H6e .to,-t P'.

We comment that I( : exp(t p) - 1 when p : 0. If p _ 0 and q : 0,

for example, then the deformation of the theorem is not cocommutative. If

dim(V) > 1 then the free algebra A is not commutative. In this case the
deformation of the theorem is not commutative.

4 Deformations of bialgebras trees

In this section we give an example from [4] involving bialgebras of trees to

which Theorem 1 applies. Let k be a field of characteristic 0. Let T be the

set of finite rooted trees, and let k{T} be the k-vector space which has T

as a basis.

We first define a coalgebra structure on k{T}. If t E T is a tree whose

root has children Sl, ..., st, the coproduct A(t) is the sum of the 2 r terms

tl ®t2, where the children of the root oft1 and the children of the root oft2

range over all 2 _ possible partitions of the children of the root of t into two

subsets. The map e which sends the trivial tree to 1 and every other tree

to 0 is a counit for this coproduct. It is easy to see that comultiplication is

cocommutative.

We now define an algebra structure on k{T}. Suppose that tl, t2 E T

are trees. Let sl, ..., s_ be the children of the root oft1. If t2 has n+ 1

nodes (counting the root), there are (n+ 1) _ ways to attach the r subtrees of

tl which have sl, ..., s_ as roots to the tree t2 by making each si the child of

some node of t2. The product tit2 is defined to be the sum of these (n + 1) _

trees. It turns out that this product is associative, and that the trivial tree

e consisting only of the root is a right and left unit. It can also be shown



that the mapsdefiningthe coaigebra structure are algebra homomorphisms,

so that A = k{7-} is a bialgebra.

For technical reasons, we require that nodes of the tree be ordered. We

say that a rooted finite tree is ordered in case there is a partial ordering

on the nodes such that the children of each node are non-decreasing with

respect to the ordering. To define the product of two ordered trees tl and

t2, compute the product of the underlying trees, and order the nodes in the

product so that the nodes which originally belonged to each tree retain the

same relative order to each other, but all the nodes that orginaily belonged

to tl are greater in the ordering than the nodes that originally belonged to

t2.

Let X be the set of of trees whose root has one child. Then A _-

k<I(X)> as an algebra [4]. Applying Theorem 1 yields a biaigebra de-

formation At of A which is neither commutative nor cocommutative.
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